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INTRODUCTION
Anterior cruciate ligament (ACL) reconstruction is one of 
the most common knee arthroscopic surgeries performed 
worldwide with 75–90% patients reporting good or excellent 
outcomes.[1] The current trend is an anatomical single-bundle 
reconstruction of ACL using the anteromedial portal for 
femoral drilling, which gives superior stability and early 
return to sports. Despite advances in surgical technique 
and the variety of grafts available, favorable graft healing 
in tunnels and ligamentization of grafts is required before 
returning to sports activities.[2,3]

Lutz, in his study of ACL autograft maturation on sequential 
magnetic resonance imaging (MRI), stated that ACL graft 
approximates the appearance of native ACL at 1- and 2 years 
postoperatively.[4] The findings in MRI correspond with the 
histological maturation of ACL autograft. ACL autograft has 
to undergo the phase of avascular necrosis, revascularization, 
resynovialization, and remodeling [Figure 1].[5]

Histological and radiological studies showed that 
revascularization starts as early as three weeks and peaks at 
six months followed by constant decrease.[2,4] Biochemical 
analysis of reconstructed ACL done by Marumo et al. showed 
that total collagen content and non-reducible/reducible 
collagen crosslinks increase significantly and resemble that of 
native ACL at the end of one year.[6] Ultrastructural analysis 
at end of two years showed that cellular and myofibroblast 
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density was almost similar/more than the native ACL.[7] 
However, collagen fibrils in reconstructed ACL developed 
unimodality of diameter distribution instead of reaching 
bimodality. Even though there is partial graft metaplasia 
at ultrastructural level, there was no decline in function of 
reconstructed ACL.[8]

Graft healing in bone tunnels is a complex process influenced 
by type of graft used, method of fixation, tunnel placement, 
graft motion, and tensioning. In humans, tendon and 
ligament has two types of insertions. (a) Direct or chondral 
ligament insertion – Native ACL insertion and patella tendon 
insertion at bone is characterized by chondral insertion.[9] 
Ishibashi et al., in a histological study, concluded that this 
chondral insertion of patella tendon to bone is retained after 
months of transplantation and appeared to have shifted to 
the proximal patella tendon-tunnel wall with time.[10] The 
presence of fibrocartilage in patella tendon recreates the 
native insertional anatomy of ACL.[6] Incorporation of bone 
plug into the surrounding host bone completes by 12 weeks 
which is quite early than healing of soft-tissue grafts. 
Indirect or fibrous insertion is histologically characterized 
by three zones-dense connective tissue, woven bone, and 
lamellar bone.[11] Collagenous Sharpey-like fibers which 
appear at 12  weeks and mature by 24  weeks anchors the 
tendon graft penetrating the woven and lamellar bone.[12] 
This phenomenon is seen with both suspensory fixation 
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and aperture fixation. The presence of these fibers correlates 
with enhanced interface strength, as all the grafts failed by 
pullout testing only at the tunnel before 12  weeks and at 
midsubstance after 12 weeks in a dog study by Rodeo et al.[13]

Since biological healing of soft-tissue grafts and bone tendon 
grafts at intratunnel level takes at least 12 weeks, mechanical 
fixation of grafts with devices is essential for the early 
accelerated rehabilitation. The biomechanical properties 
of the entire graft construct would be the same as native 
ACL and is partly determined by the method of fixation, 
and also by the effect of cyclical loading. The ideal fixation 
device should allow biological healing of the graft, reduces 
graft motion inside the tunnel, and maintains the adequate 
graft tension and withstand forces on the graft resulting from 
accelerated rehabilitation protocols.[14]

Fixation devices in history evolved over time. Broadly graft 
fixation methods can be classified into indirect or suspensory 
fixation and direct or aperture fixation. In suspensory mode 
of fixation, fixation device suspends the graft inside the bone 
tunnel. Examples include cortical suspensory buttons, screw 
and washer, cortical plate, and screw. In aperture fixation, 
graft is compressed against the wall of the bone tunnel. 
Aperture fixation devices include metal and biodegradable 
interference screws.[15]

This article reviews our current knowledge on the options 
available for fixation of ACL graft. Biomechanical properties, 
clinical outcome, risks, and complications associated with 
each fixation device will be discussed.

BIOMECHANICS OF ACL GRAFT FIXATION
In vitro biomechanical analysis of ACL graft and ACL 
graft-fixation construct was necessary to make sure that 
it can withstand loads from daily activities and accelerated 
rehabilitation protocol. Single cyclical load to failure 
analysis of ACL graft and graft fixation construct gives 
ultimate failure loads in N (Newton). This value represents a 
catastrophic event such as a fall or traumatic incident.[15] The 

ultimate failure load for native ACL was found to be 1725–
2160N, 2977 for bone patellar tendon bone graft, 4090N for 
hamstring tendon preparation, and 2352N for quadriceps 
tendon grafts. Bone patella tendon was the strongest, with a 
mean strength of 159–168% of native ACL.[16] These values 
represent the graft alone and do not include the fixation 
of the graft to the bone. Forces in the ACL during various 
movements range from 20N to almost 600N.[17] Forces in ACL 
while walking were found to be 150N, single leg stance 303N, 
and jogging 450N.[18,19] Hence, the graft fixation construct 
should demonstrate an ultimate failure load >590N, which 
is needed for early rehabilitation after anterior cruciate 
ligament reconstruction (ACLR).[18] Aggressive activities 
such as jumping, running, and sports should be avoided until 
graft-bone healing occurs 12 weeks after ACLR.
Halonen et al.[20] suggest that stiffness is the crucial parameter 
in ACL reconstruction, and optimal stiffness and prestrain 
are required to restore the joint motion as well as stresses 
and strain distribution of the articular cartilage. The graft 
fixation construct is 4–40 times less stiff than the graft itself. 
Hence, the fixation method with maximum stiffness should 
be chosen to match the stiffness of native ACL. The entire 
stiffness of the reconstruction complex should be close to the 
native ACL stiffness for controlling the anterior translation 
of the tibia.[15,20] Hence, stiffness is an important parameter to 
be considered during the measurement of implant stability. 
The stiffness of the graft-fixation construct is calculated from 
the load versus elongation curve as the ratio of the applied 
load and the corresponding deformation.[21] Most of the 
studies preferred cyclical loading than single cycle load for 
evaluation of the stiffness of the construct, as cyclical loading 
represents the repetitive loading pattern that occurs during 
post-operative rehabilitation protocol.[15] Forces were applied 
cyclically, and resulting elongation should be measured at 
the graft level and graft fixation level. Benca et al.[21] revealed 
that stiffness calculation using machine displacement would 
result in a precise, but inaccurate prediction, allowing only 
for a qualitative comparison between the different fixation 
methods.
Benca et al.[21] measured relative motion at each end of the 
graft fixation construct and found that the displacement of the 
distal graft end was significantly lower than the displacements 
of the proximal graft end and machine actuator. Many 
biomechanical studies have defined clinical failure at a 3-mm 
threshold of machine displacement. However, according to 
Benca et al.,[21] this corresponds to less than one millimeter of 
actual graft slippage. Hence, most of the displacement results 
from graft elongation, stretching of the loops or sutures in 
the implant rather than graft laxity. Thus, graft migration 
and graft elongation are different entities. Graft migration or 
graft slippage is the distal displacement of the graft relative 
to the tunnel wall, which depends on the strength of the 
respective fixation technique. Not only migration of the graft, 

Figure 1: Magnetic resonance imaging RI T2 sagittal section showing 
graft looking similar to the native anterior cruciate ligament at one-
year follow-up.
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but graft strain also contributes to the graft fixation complex 
elongation.[22] Thus, graft fixation complex elongation is 
determined by both the tensile properties of the graft and the 
strength of the fixation system.[21]

SUSPENSORY FIXATION
Suspensory fixation devices suspend the graft inside the 
bone tunnel. These devices are capable of maximizing 
the amount of graft inside the bone tunnel, which helps 
in graft healing. The devices are broadly classified into 
extracortical suspensory devices and transcondylar cross-
pins. Extracortical suspensory devices include a cortical 
button with either a fixed loop or an adjustable loop wherein 
the button rests on the cortex of femur and the loop holds 
the folded tissue until healing occurs. Fixed loop devices 
biomechanically and clinically studied includes EndoButton 
CL (Smith & Nephew, Andover, MA), RetroButton (Arthrex, 
Naples, FL), and ToggleLoc (Biomet, Warsaw, IN).
Adjustable-loop devices include ToggleLoc with Ziploop 
(Biomet, Warsaw, IN), ACL TightRope RT I, and ACL 
TightRope RT II (Arthrex, Naples, FL). In ACL TightRope 
RT II, there are suture tapes instead of round sutures in 
TightRope RT I [Figure 2]. The all-inside technique of ACL 
reconstruction was mentioned in the manuscript which 
was described by Lubowitz et al.[23] This technique features 
closed-socket tunnels with less bone removal, dual (femoral 
and tibial) suspensory fixation, and smaller skin incisions.
Cross-pins available are broadly categorized into 
corticocancellous suspensory device (TransFix and Bio-
TransFix – Arthrex) and cancellous suspensory device 
(RigidFix – DePuy, Mitek). Hakimi et al. showed that in 
UK, for femoral fixation of soft-tissue grafts, 79% were using 
suspensory mode of fixation wherein EndoButton was most 
commonly.[24] Even though these devices have the strongest 
ultimate failure loads and stiffness, the most common 
concern of these devices are displacement on cyclical loads 
and intratunnel graft motion leading to tunnel widening.

Tunnel widening
Saccomanno et al.[25] mentioned that there was significantly 
more femoral tunnel widening with the use of the 
EndoButton compared to cross-pins for fixation within the 
femoral tunnel. Intratunnel graft motion leading to tunnel 
widening is divided into longitudinal motion (bungee effect) 

and transverse motion (windshield wiper effect).[25] Hoher 
et al. proved that when the distance between tendon tissue 
and button increased, graft tunnel motion also increased.[26] 
This explained the finding of Fauno et al. that both femoral 
and tibial tunnel widening was greater with EndoButton 
where the fixation point away from the joint. Hence, not 
only intratunnel graft motion leads to tunnel widening, but 
also, non-anatomical tunnel placement[27] and aggressive 
rehabilitation[28] are other mechanical causes for tunnel 
widening. Silva et al.[29] mentioned that tunnel widening 
is not only attributed to mechanical causes, but there are 
also biological causes which include bone resorption due to 
osteoclast activation by mediators between tunnel and graft, 
non-specific inflammatory response, and heat necrosis due 
to drilling.
Similar tunnel enlargement was seen between aperture 
fixation and extracortical fixation.[30] Therefore, the type of 
fixation appears not to have a significant effect on tunnel 
enlargement, since enlargement occurs irrespective of 
fixation type, suggesting that the enlargement may be more 
of a biological than a mechanical phenomenon.

Biomechanics
Milano et al.,[31] in his in vitro biomechanical study on 
porcine knees for femoral fixation of soft-tissue grafts, 
concluded that ultimate failure load and stiffness are higher 
for EndoButton than interference screws. The ultimate 
failure load of EndoButton for soft-tissue femoral fixation 
was comparatively higher than cross-pins and bioscrews 
in all biomechanical studies[31,32] with values more than 
590N [Table  1] which is the amount of force required for 
all daily day-to-day to activities. Soft-tissue grafts fixed 
with EndoButton on the femoral side showed maximum 
graft-bone displacement after cyclical loading in an 
in vitro biomechanical study.[31,33] However, graft slippage 
(i.e., displacement at the distal graft end) was greater for the 
Rigidfix and interference screws than EndoButton and Bio-
TransFix.[34,35] Hence, corticocancellous devices (Rigidfix) 
were found to be superior for soft-tissue graft femoral fixation 
biomechanically in terms of graft elongation, stiffness, 
ultimate failure load, and extracortical suspensory devices 
showing variable biomechanical behavior.[31] Interference 
screws and cancellous suspension devices showed inferior 
biomechanics for soft-tissue graft femoral fixation. Since 
cross-pins had associated risks of intra-articular damage, 
reported cases of supracondylar fracture,[36] pin dislocation, 
and iliotibial band (ITB) friction syndrome[37] that most of 
the surgeons prefer to use extracortical suspensory fixation 
devices than cross-pins for soft-tissue graft femoral fixation.

Fixed loop versus adjustable loop
At present, there are two extracortical suspensory fixation 
devices in practice: A cortical button with a fixed loop and 
an adjustable loop. Kamelger et al. did a biomechanical 

Figure  2: Extracortical suspensory fixation (a) adjustable loop 
(Arthrex-TightRope RT). (b) Fixed loop (Smith & Nephew 
EndoButton).

ba
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Table 1: Soft-tissue graft femoral side fixation implants – Biomechanical analysis.

Author Mode of testing and 
test protocol

Specimen Femoral fixation 
implants

Ultimate 
failure 

Load (N)

Stiffness 
(N/mm)

Graft 
elongation

Ettinger et al.[38] Cyclic loading of 500 
cycles between 60 N and 
250 N of 1 Hz

Porcine femora 
with human 
tendon grafts

Bioscrews
Arthrex

497.8 71.6 3.9 mm

Bioscrew-Mitek 543.9 48.4 4.6 mm
Staerke et al.[22] Cyclic loading of 800 

cycles between 50 N and 
250 N at 1 Hz

Human BTB graft 
fixed with porcine 
femur

BTB graft with 7*23 
bioscrew

- - 0.34 mm

Porcine extensor 
tendons over 
porcine femur

50 mm bioabsorbable 
cross-pin (Bio-TransFix, 
Arthrex Inc.; Naples/FL, 
USA)

- - 0.67 mm

5 mm continuous loop 
EndoButton (Smith and 
Nephew Endoscopy; 
Andover/MA, USA)

- - 1.96 mm

Interference screw 539 - -
EndoButton 864 - -
Interference screw - - 5.44 mm
EndoButton - - 1.75 mm
Bioscrew 445N - 6–8 mm

Kamelger et al.[39] Cyclic loading between 
50 N and 250 N at 1 Hz 
for 1000 cycles.

Porcine femur 
with only fixation 
device

EndoButton CL (20 mm 
loop)

1024 214.7 3.6 mm 
(displacement 
to failure)

RetroButton (20 mm 
loop)

798 331.5 3.2 mm

ToggleLoc (20 mm loop) 968 232 2.6 mm
ToggleLoc with zip loop 
technology (adjustable 
loop)

876 305 6.52 mm

Eguchi et al.[40] Preload and 2000 cycles Specimen testing 
with porcine femur 
and bovine flexor 
tendons

EndoButton 1115 - 5.88 mm
TightRope RT 880 - 7.74 mm
ToggleLoc with ziploop 1334 3.34 mm
TightRope RT 859 2.74 mm
ToggleLoc with ziploop 830 172 8.4 mm
Tape locking screw 640 178 5.3 mm

N: Newton, Hz: Hertz, BTB: bone-tendon-bone, CL: continuous loop, RT: Reverse Tensioning

analysis of isolated device testing between various fixed loops 
(EndoButton, ToggleLoc, and RetroButton) using porcine 
femurs. All fixed loop implants demonstrated an ultimate 
failure load of more than 590N, and this improved implant 
design limits graft tunnel motion. The stiffness of graft–fixed-
loop construct reapproximated the native ACL stiffness. 
Most of the failures in his study occurred due to the breakage 
of continuous suture loops in these devices.[39]

Fixed-loop devices limit graft migration, but the requirement 
to drill tunnels for a specific length raises concern in terms 
of bone preservation and tendon-bone healing in terms of 
inadequate graft length. However, adjustable-loop devices 
allow the surgeon to adapt to different tunnel lengths 
intraoperatively and maximize the amount of graft within 
the tunnel. Furthermore, adjustable-loop devices have the 

ability to retension the graft on the femoral side after tibial 
fixation.[40] Biomechanical analysis of adjustable devices was 
necessary and should be comparable with the fixed-loop 
devices for surgical usage. Biomechanical analysis of all 
adjustable loops, as mentioned in Table 2, demonstrated an 
ultimate failure load of more than 590N, which corresponds 
to the commonly accepted recommendation, and also, it was 
comparable to the fixed-loop devices.[32] Most of the failure 
occurred by tendon rupture in fixed loops, loop breakage, and 
slippage in adjustable loops. Stiffness also reapproximated 
the stiffness of native ACL constructs. Barrow et al.[41] 
showed significant loop lengthening of TightRope RT 
device more than 3 mm after fewer cycles (1349 ± 316) than 
the ToggleLoc (2576 ± 73). With the free suture ends tied, 
after 4500  cycles, the TightRope had a significant decrease 
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in lengthening. Hence, adjustable-loop devices need to 
be retensioned after cycling the knee and free suture ends 
should be tied, which had been shown to decrease cyclic 
displacement making it biomechanically better. However, 
fixed-loop devices are always superior than the adjustable-
loop devices biomechanically because they allow less cyclic 
and initial displacement, thus providing better graft femoral 
fixation in terms of limiting graft slippage and providing 
sufficient graft strength.
Mayr et al., in his biomechanical study, found that tibia 
suspensory fixation yielded a higher ultimate failure load but 
with a higher graft elongation.[43] There are no biomechanical 
studies involving both femoral and tibial suspensory fixation 
which is used in all inside ACL reconstruction. However, 
there are clinical outcome comparison studies that exist 
between all inside ACL reconstruction and standard ACL 
reconstruction.

Clinical outcome

Saccomanno had done a systematic review of five studies 
involving 317 patients with a mean follow-up period of 21.7 
± 7.0  months.[25] The Lysholm score, Tegner activity score, 
and International Knee Documentation Committee (IKDC) 
score were compiled. The included studies did not report 
any significant differences in clinical outcomes between 
extracortical suspensory fixation and transfemoral fixation.[25]

Ma et al.[44] showed that rigid aperture fixation using 
a biodegradable screw and suspensory fixation using 
EndoButton did not lead to significant differences in 
clinical outcome at 24–40  months follow-up evaluation. 
Significant tunnel enlargement was present in both groups, 
more pronounced on the femoral side. Harilainen et al done 
prospective randomized clinical comparison of femoral 
transfixation versus bioscrew fixation in hamstring tendon 
ACL reconstruction. There was no significant difference in 
knee laxity, IKDC score, Tegner Lysholm Score.[45]

There are few clinical studies that have compared adjustable-
loop and fixed-loop femoral cortical suspension devices, 
which  showed no significant differences in knee stability 
and the graft failure rate between adjustable-  and fixed-
loop femoral cortical suspension devices at two years 

postoperatively in a consecutive series of 188  patients who 
had undergone primary ACLR using hamstring autograft. 
However, Choi et al.,[46] in his prospective study, found that 
femoral fixation by the use of the fixed-loop device resulted 
in significantly better knee stability on the pivot-shift test 
than the adjustable-loop device after ACLR with a hamstring 
graft. However, the patients in the adjustable-loop group who 
had grade  2 pivot-shift test findings had excellent Lysholm 
scores.
In a meta-analysis by Connaughton et al.,[47] they compared 
all inside ACL reconstruction (both femoral and tibial 
suspensory fixation) and standard ACL reconstruction 
(femoral suspensory fixation and tibia aperture fixation). 
They found that clinical outcomes are similar between the 
two, even though the lowest visual analog scale scores were 
seen with all-inside techniques. Some studies reported a 
higher graft failure rate in all inside techniques, probably 
attributed to higher graft elongation in suspensory fixation 
and early return to pivoting sports before ligamentization.[48]

Hence, there is no superiority among transfemoral fixation, 
extracortical suspensory fixation, and interference screw 
fixation for soft-tissue grafts in clinical outcome, even though 
there were significant differences in biomechanical analysis 
and tunnel widening.

APERTURE FIXATION
Direct or aperture fixation devices are used to compress the 
graft against the outer surface of the bone or wall of the bone 
tunnel. Aperture fixation devices include interference screws 
and staples.[15] Interference screws which are currently used in 
practice include metal (titanium) and biodegradable screws. 
Bioabsorbable materials include polylactic acid, poly‐L‐lactic 
acid (PLLA), or polyglycolic acid (PGA), all of which degrade 
and are replaced by tissue over time [Figure 3].

Biomechanics
Ishibashi et al., in the biomechanical analysis using porcine 
knees, proved that proximal graft fixation in tibia reduced 
anterior displacement and internal rotation of tibia as 
well as in situ forces of the graft itself.[49] Mayr et al., in his 
biomechanical study using calf tibiae, found that interference 
screws demonstrated higher pullout stiffness (309.5N/

Table 2: Soft-tissue grafts tibial side fixation implants – Biomechanical analysis.

Author Mode of testing 
and test protocol

Specimen Tibial fixation 
implants

Ultimate 
failure load (N)

Stiffness 
(N/mm) 

Graft 
elongation

Kousa et al.[42] Cyclic testing-1500 
cycles

Porcine tibia WasherLoc 975
Bioscrew 612N
Intrafix 1332
Soft silk 471

Mayr et al.[43] Cyclic testing Calf tibia Adjustable loop 908 6.03 mm
Tibia screw 693 3.33 mm
Bioscrew 476 63.9 7.564 mm



Elango: ACL graft fixation

Journal of Arthroscopic Surgery and Sports Medicine • Volume 5 • Issue 2 • July-December 2024 | 101

mm vs. 185.6 N/mm) and reduced elongation (3.33 mm vs. 
6.08  mm) than adjustable loops.[43] However, the ultimate 
failure load was lower than adjustable loops (693N vs. 908N), 
which was well within the 590N range.[32,43] Scheffler et al. 
suggested that direct anatomic fixation should be used for 
soft-tissue fixation, especially on the tibial side, since it is the 
weakest point in all reconstructions.[35] However, this direct 
soft-tissue fixation had the risk of graft slippage since the 
mechanical engagement between the screw and the graft is 
less intense. Further, it has been suggested that the screws 
caused laceration and necrosis of soft-tissue grafts.[22] Hence, 
it is better to go for the application of backup or hybrid 
fixation, especially on the tibial fixation site. Hakimi et al. 
found that in UK, almost 57% of tibial fixation was most 
commonly done by interference screws, followed by Intrafix 
(31%). A  bioabsorbable interference screw was used in 
97% of cases for tibial side fixation.[24] Interference screws 
should hold the graft firmly for a minimum of 12 weeks so 
early rehabilitation is allowed without any concern in graft 
integration. Other direct methods such as clawed washer-
screw combination and staples showed inferior biomechanics 
and increased risk of complications such as skin irritation, 
percutaneous ganglion with these devices.[50]

Biomechanical analysis between metal and biodegradable 
screws using flexor graft tendon complex in porcine knees 
was done by Nakano et al.[51] He found that biodegradable 
screws had high stiffness and low ultimate failure load than 
metal screws. The ultimate failure load of biodegradable 
screws is higher than titanium for femoral side soft-tissue 
graft fixation and similar for tibial side fixation. However, 
titanium screws produce more screw thread-induced graft 
laceration, especially on the femoral side than the tibial side. 
Hence, metal screws should not be preferred for femoral 
soft-tissue graft fixation. This shows the superiority of 
biodegradable screws over titanium screws for soft-tissue 
graft fixation biomechanically, especially in the tibial side.

Clinical outcome
Shen et al.,[52] in his meta-analysis, included 12 studies 
comparing biodegradable screws and metal screws clinically. 
They showed similar clinical outcomes with respect to 
IKDC scores, Lysholm scores, KT arthrometer testing, and 
infection rate. However, the biodegradable screw group had 
an increased rate of knee effusion (Risk ratio [RR], 2.57; P = 
0.04; 421 patients in four studies).

Bone-tendon-bone (BTB) graft-interference screw fixation
Bone tendon grafts are mechanically more stable than 
hamstring grafts. Interference screws, either metal or 
biodegradable, were most commonly used for BTB graft 
fixation in the femoral and tibial sides. Compression between 
graft bone and wall of bone tunnel with the help of interference 
screws assists in direct bone-to-bone healing of the graft. 
Plominski[53] compared the clinical results of BTB graft 
ACL reconstruction using metal and biodegradable screws. 
After the follow-up of three years, they found no statistical 
difference in Lysholm scores and IKDC scores. However, 
osteolytic changes were observed in the biodegradable screws 
group with evidence of foreign body reaction in one patient. 
But Hackl et al compared polyglyconate bioscrew and titanium 
screw and found no evidence of increased complications 
for polyglyconate screw for BTB graft fixation.[54] However, 
for BTB graft fixation, both metal and biodegradable screws 
can be used, but the risk of osteolysis and foreign body 
reaction associated with biodegradable screws should be 
considered. Staerke et al. found that the most rigid graft/
fixation combination was bone-patellar tendon-bone (BPTB) 
graft fixed with an interference screw as it demonstrated 
minimal graft migration compared to soft-tissue grafts fixed 
with EndoButton and cross-pins. Hence, the BPTB graft and 
interference screw combination has often been considered 
the “gold standard” in ACL reconstruction due to its superior 
mechanical stability.[22]

Not only do material properties of interference screws 
influence the stability of the fixation, the other parameters 
such as screw length, diameter, screw slope, divergence, 
placement of the screw, bone mineral density (BMD), and 
insertion torque influence the stability of the fixation.

Screw length
Stalder et al.,[55] in his study, showed that the femoral fixation 
strength of the interference screw significantly improved by 
approximately 30% if the screw is shorter than the graft end 
in the bone for soft-tissue grafts. However, in tibial fixation 
of soft-tissue graft, Weiler et al.[56] showed that increasing 
screw length improves fixation strength for the same diameter 
(23 mm–367.2N vs. 28 mm–537.4N). Hence, the length of the 
screw should be adequate enough to hold the graft, especially in 
the proximal part of the tibial tunnel, so that fixation strength 
is increased in the weak link of ACL reconstruction.[49,57]

Figure 3: Bioscrews with Intrasheath.
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Screw diameter
Graft fixation strength (367.2N vs. 479.1N) was higher 
when the screw diameter is more than the graft diameter 
by 1 mm, which is due to the press fit mechanism crushing 
the surrounding cancellous bone. However, there is poor 
engagement of thread into the bone.[15,22] Shapiro et al.[58] 
found that in BTB graft fixation, there was no difference in 
biomechanical parameters between 7 mm and 9 mm screws, 
and iatrogenic injuries to patellar tendon bone block were 
lower with 7 mm screws.

Screw slope
Daneshvarhashjin et al.[59] recently studied newly designed 
and fabricated two differently tapered interference screws 
where the diameters of both screws were equal to bone 
tunnel diameter in one-third of their length from screw tip, 
then they were gradually increased by 1  mm, in the lower 
slope tapered interference screw (LSTIS), and 2 mm, in the 
higher slope tapered interference screw (HSTIS) screws 
[Figure  4]. On biomechanical analysis, HSTIS showed 
greater graft-bone-screw construct stiffness and a lower graft 
laxity compared to LSTIS. Biomechanically, higher slope 
screws demonstrated lower contact pressure than lower slope 
screws in the proximal one-third region of the tibia tunnel 
which prevents rupture of grafts, and better contact pressure 
in the mid-third and outer third region, which prevents graft 
slippage. Hence, screw slope also determines the stability of 
the fixation, which needs further research in vitro and in vivo.

BMD and insertion torque
Both insertion torque and BMD were related to the 
maximum load the graft withstood.[60] Phillips et al.[61] 
found that the insertion torque was significantly higher at 
the distal third of the tibial tunnel (outer cortex, 8.7in/lb) 
than at the middle third and proximal third (joint line of 

the tibial tunnel – 4.3 in/lb). Lower insertion torque at the 
proximal third of the tibial tunnel results in lower peak load 
and pullout strength of the graft, and this may outweigh the 
proposed benefits of joint-line fixation on the tibial side, as 
shown by Ishibashi et al.[10] Hence, measuring BMD and 
insertion torque in biomechanical analysis of interference 
screw fixation is necessary.

Screw placement

Placement of the screw can be eccentric or concentric. The 
concentric placement of the Bio-Intrafix screw within its 
sheath ensures 360° graft-to-bone placement with better 
engagement. Wang et al., in their biomechanical analysis, 
found that the Intrafix demonstrated a higher failure load 
(719N vs. 476N) than biodegradable screws. Their stiffness 
and displacement remain the same.[15] Hence, soft-tissue 
fixation on the tibial side with Intrafix and biodegradable 
screws is able to meet physiological demands.

Divergence

Divergence of the screw from the graft may occur during 
insertion, especially on the femoral side. However, this 
deviation can be reduced by inserting the screw through 
the same portal, the femoral tunnel that was drilled, which 
can be easily done in the medial portal technique of ACL 
reconstruction.[61] Schroeder et al.[62] found a reduction in 
fixation strength if the divergence was more than 15°.

COMPLICATIONS
Transfemoral fixation

Pain due to prominent hardware is the common 
complication reported with cross-pins. It occurs due to 
the migration of cross-pins medially, laterally, or intra-
articularly,[63] leading to loose body formation and chondral 
damage. Cross-pins provide good stability and clinical 

Figure 4: Images of two tapered interference screws. Left side – lower slope tapered interference screw 
(LSTIS) and right side – higher slope tapered interference screw (HSTIS).
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outcomes, even though they are malpositioned. However, 
unpredictable complications can be avoided with proper 
positioning of the cross-pin tunnel and the usage of correct 
surgical technique.

Suspensory fixation
Tunnel widening is the most common problem encountered 
with the usage of extracortical suspensory fixation. However, 
tunnel widening has not been found to have affected clinical 
outcomes, but it may complicate the revision of ACL 
reconstruction.[25] Kong et al. reported that complications 
include failure of the button to deploy in the proper position 
(i.e., it may not flush with the distal femoral cortex, or it 
may have deployed in the intraosseous tunnel).[64] Mae et al. 
found that 25.2% of patients after ACL reconstruction had 
tissue interposition between the EndoButton and femoral 
lateral cortex, and EndoButton with tissue interposition 
migrated more frequently than those without it after ACL 
reconstruction. However, clinical outcomes remained 
the same with the migrated EndoButton.[65] Sylvian Guy 
suggested direct visualization of the implant to check for 
proper deployment and to avoid tissue interposition which 
shortens the distance between ITB and button which will 
prevent ITB friction [Figure 5].[66]

Interference screws
Metal interference fixation has been associated with several 
intraoperative complications, including graft laceration, 
breakage of the bone block, advancement of graft, and 
incorrect screw placement.[67] Even though there were cases of 
migration of screws in the popliteal fossa, intra-articular notch, 
and lateral gutter, there were no reports of migrated screws 
causing loss of stability[68] [Figure  6]. The probable cause for 
migration explained was bone resorption, incorrect placement 
of the tunnel or screw, incomplete insertion of the screw, and 
secondary twisting injury. Hence, migrated metal screws, if 
present and symptomatic, should be removed arthroscopically, 
and arthrotomy can be considered for difficult removal.
Bioabsorbable screws are less likely to cause graft laceration 
than metal screws and it won’t create ferromagnetic 
artifacts in MRI. It allows for easier revision surgery. 
However, biodegradable screws are associated with several 
complications due to their incomplete or prolonged 
degradation and incomplete ossification. Degradation is 
influenced by several factors which include polymer type, 
implant size, location, local circulation, the percentage of 
crystallinity, molecular weight, and surface area open to 
degradation.[69] PGA screws degrade rapidly and PLLA 
screws have longer degradation periods.[70] Macarini with 
MRI analysis reported that 34 of 35 poly-D-L-lactic acid 
(PDLLA) screws demonstrated complete degradation and 
ossification at the end of three years. There was a cyst-like 
formation at the screw site, which was considered to be a 
normal feature of the screw degradation process.[71]

Degradation of bioscrews occurs by hydrolysis of the 
hydrolytically unstable polymer. Breakdown products 
(glycolic acid and lactic acid) that accumulate create a 
locally acidic environment that stimulates resorption and 
inhibits bone formation.[72] In biocomposite devices, there 
will be associated osteoconductive components adding to 
bioabsorbable components, promoting bony ingrowth. When 
the bioabsorbable polymer portion degrades, there will be 
an increase in the porosity of the implant, expanding the 
surface area for the breakdown of calcium and phosphate.[73] 
This stimulates osteoblasts and increases bone production. 
Basic salts released by the breakdown of the osteoconductive 
portion counteract the acidic byproducts of the polymer, 
which leads to reduced resorption effects. Hence, adding 
an osteoconductive portion to a bioabsorbable screw has 
negative effects on screw degradation.[69] Gradual resorption 

Figure  5: Soft-tissue interposition 
between the cortex and the button.

Figure 6: Migration of screws in the popliteal 
fossa (Case courtesy of Henry Knipe, 
Radiopaedia.org, rID: 72407).
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of the screw leads to the weakening of the device, and it may 
fracture into fragments, producing mechanical symptoms as 
well as inflammatory reactions such as synovitis, effusion, cyst 
or granuloma formation, sterile abscess, or wound dehiscence. 
There are reports of fractured screw fragments migrating 
intraarticularly, producing mechanical symptoms and 
chondral damage.[74] Hence, early identification is necessary 
to prevent the devastating complications of chondral injury.
Gonzalez-Lomas et al. reported a similar 5% incidence of 
pretibial cyst formation and found that none of the cysts were 
infectious, and the graft was well incorporated without any 
loss in instability.[75] As there is incomplete bone integration 
associated with biodegradable screws, stress risers would be 
created, leading to fracture. Biodegradable screws also has 
the demonstrated risk of fracture during insertion without 
any failure of reconstruction.[76]

Shen et al.[52], in their meta-analysis, revealed that more 
tunnel widening was observed with biodegradable screws 
than metal screws, especially on the femoral side, without any 
loss in stability. Other significant adverse events include knee 
effusion and screw breakage. However, functional outcome 
measures between the two remain the same. This does not 
justify the advantage of biodegradable screws over metal 
screws. Even though it is said to be advantageous in MRI, 
requesting for follow-up MRI after ACL reconstruction is not 
a routine clinical practice. Metal screws are said to cause graft 
laceration, but there was only one case report regarding the 
same in the meta-analysis of Shen et al.[52] Although it was 
claimed that biodegradable screws allow for easier revision 
surgery, there was no Randomised Controlled Trial (RCT) 
proving the same. Hence, biodegradable screws can be used 
for fixation as it has better biomechanical and functional 
outcomes, but the patient should be informed about the risks 
and complications associated with it.

CONCLUSION
ACL graft fixation implants available in the market currently 
provide acceptable clinical outcomes with minimal 
complications, even though there are biomechanically 
superior implants for femoral and tibial fixation. Every 
arthroscopic surgeon should have the knowledge of 
biomechanical analysis, clinical outcome, and complications 
of the implant they are using to fix the ACL graft. Implant 
specific complications and its management need detailed 
research in future and development of ideal implant should 
be promoted.
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